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On the basis of the functionally-invariant solutions of the wave equation, sugges- 

ted by Smirnov and Sobolev, we give a closed solution of a class of selfsimilar 
problems of the dynamical theory of elasticity. This class contains the following 

problems: (a) a half-plane, arbitrarily loaded at the boundary (including the 
case when the endpoints of the loaded segments move with arbitrary constant 
velocities); (b) the contact problem for the half-plane, when the ends of the 
contact areas are displaced with arbitrary constant velocities ; (c) a collection 
of arbitrarily loaded cuts along the same line, moving with constant velocities, 
the different endpoints of the cuts having, possibly, different velocities. The solu- 

tion of the indicated problems are reduced in the simplest cases to the Dirichlet 
problem or to the mixed Keldysh-Sedov problems of the theory of analytic func- 
tions of a complex variable. In principle, the procedure for finding the solution 
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is not more complicated than for the similar problems of statics and steady dynamics 

(the solution of the latter problems has been found basically by Kolosov, Muskhe- 
lishvili,Galin and Radok). First we introduce the general representations of the 

solutions by analytic functions of the complex variable for an arbitrary index of 
selfsimilarity and we describe the general method of solution. Then we illustrate 

the method with some concrete problems of the indicated class. The examina- 

tion is restricted to the plane problems for the homogeneous and isotropic body; 
however the method can be easily generalized to the case of an anisotropic 

piecewise-homogeneous body, when the upper and lower half-planes have dif- 
ferent elastic constants. 

In 1932, Smirnov and Sobolev have discovered a class of solutions of the wave 
equation, in which the solution is represented in terms of an analytic function of 
a complex variable [l] (see the Appendix). In particular, this class contains the 

selfsimilar problems. Some interesting problems from the theory of the diffrac- 
tion of plane elastic waves at a cut @, 31 and at a wedge have been analyzed 
by the Smirnov-Sobolev method, however, in the majority of the solutions of the 
dynamical problems of the theory of elasticity, obtained in the last 20 years, 
considerably more cumbersome methods have been used, requiring a large vo- 
lume of computational work. We enumerate some of the most well-known solu- 

tions. 

The problem of the sudden appearance of a rectilinear semi-infinite fixed 

cut in a constant tension field has been solved [4] and also the problem in which 
the same cut moves with a fixed velocity from the instant of its appearance [s]. 

The propagation of a crack with a constant velocity in both directions, with ini- 
tial length ,equal to zero in a constant tension field has been investigated [S] 

(the corresponding axisymmetric problem has been considered in [7, 81. Some 
dynamical problems of crack propagation are studied in [12] and a sufficiently 
detailed survey of the literature is given there. In [13 - 151 Broberg’s problem 
[6] has been generalized to the case of an anisotropic material and to the case 

of an arbitrarily given normal load on the crack which maintains the selfsimilar 

character of the problem. All the indicated solutions are selfsimilar with index 

(0, 0) (see monograph [l] and also Sect.1 of the present paper). 
To these problems belong also the contact problem of the impact of a wedge 

on a half-plane [18], the problem of the motion with a constant velocity of a 
concentrated force on the boundary of a half-plane starting at some initial inst- 
ant [19], the contact problem on the thrust of a die against a half-plane’ PO]. 

In the problems 118 - 201 the index of selfsimilarity is different. A large num- 
ber of analogous selfsimilar problems has been considered in the acoustic appro- 

ximation which correspond to shear in the theory of elasticity (see, for example, 

ml). 
In recent papers c22, 231, simultaneously and independently, the problem of 

the motion of a semiinfinite cut with a constant velocity (as in Baker’s problem) 
has been solved ; concentrated forces are applied to the sides of the cut. This 

solution can be used as the Green’s function in the case of arbitrary static loads. 

Making use of the characteristic property of the stress intensity coefficient in the 
obtained solution, one has succeeded to generalize it to the case of the motion 
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of the cut with an arbitrary nonconstant velocity for arbitrary applied loads r22]. 
In the present paper we develop a general approach to the selfsimilar prob- 

lems of the dynamical theory of elasticity, which allows us to obtain their solu- 
tion in a very simple way in closed form. This approach is based on the general 
representations of the solutions in terms of analytic functions of a complex vari- 

able which allows us to formulate at once the indicated selfsimilar problems as 
some Riemann-Hilbert problems for the half-plane (in the simplest cases one 

obtains the Dirichlet problem and the mixed Keldysh-Sedov problem). The 

Riemann-Hilbert problem for the half-plane can be easily solved with the aid 
of the standard methods, presented for example, in @4, 251. In Sects. 2 - 4 we 
consider also some concrete problems of punches, of moving loads and of cracks. 
The indicated general approach has been applied previously to the solution of 

different particutar problems [26 - 301. 

1, General repre8entatfon8, The method of aolutfon. Weassume 
that a homogeneous and isotropic elastic body is in a state of plane strain. The funda- 
mental equations of the dynamic theory of elasticity have in this case the following 

form : II =- II] -‘- II?, 1’ :z= I’, _;- Z’., 
(1.1) 

<?!/I at:, i)li,! ar:? 
-z - 

?v 

_.~_-- 
&c ’ a.v if!/ 

(k -- t , 2) (W 

Here 71 (.T, ?/, t) and 2‘ (2, ?/, 1) are the displacement components with respect to the 

axes x and y of the Cartesian eoordinates,respectively, cr and cs are the velocities 
of the longitudinal and transverse waves (~1 > c%). 

The components (T,~. or,, TV\.!, of the stress tensor are, according to Hooke’s law (1-1 

is Lame’s constant) 

(1.3) 

We indicate a class of selfsimilar plane problems of the dynamic theory of elasticity, 

whose solution with the aid of the complex variables z1 and za, where 

reduces to the Riemann-Hilbert boundary value problem from the theory of analytic 

functions of one complex variable (in the simplest cases to the Dirichlet problem or to 
the mixed Keldysh-Sedov problem). This class includes the following problems [17]. 

The first fundamental problem (problem A): (a) aninfiniteelastic 
half-space 3 > 0 has an arbitrary number of loaded segments along the z-axis, the 
endpoints of these segments,having coordinates .x,,_ are moving with constant velocities 
‘T I, II. so that J‘,~ ; : J’,, 1 (in particular, the velocities of some endpoints may be equal 
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to zero): 

b) at the initial instant t 1 0 the half-space is at rest; 
c) the normal and tangential loads on the indicated segments are arbitrary linear 

combinations of the following functions : 

o,, (4 m, (t) 

r(J-m clt” 
(1.5) 

where 

fi 65) = { 

0 for F < 0 

Ei for 4 > 6 (1.6) 

Here k, 1, m, ,I are arbitrary positive integers. 

The second fundamental problem (problem El): ( a) the infinite 

elastic space has an arbitrary number of cuts along the x-axis, the endpoints X, of the 
cuts moving with constant velocities Ii,,, so that 5, = pSn t (in particular, some V, 

may be equal to zero); 
b) at the initial instant t = 0 the space is at rest; 

c) the normal and tangential loads on the cuts are arbitrary linear combinations 

of the functions (1.5) (see also (1.6) ) , the loaded segments need not coincide with the 
cuts and may move with their own velocities. 

The contact problem (problem C): ( a ) an infinite elastic semispace 

2/ > 0 has an arbitrary number of loaded segments along the s-axis, the endpoints of 
these segments with coordinates xn, are moving with constant velocities, so that X, = 

v, t; 
b) at the initial instant t = 0 the space is at rest; 

c) on the loaded segments we have boundary conditions of one of the three types : 
(1) the normal and tangential displacements are given as some arbitrary linear combi- 
nations of functions of the form (1.5), (1.6) (a rough punch) ; (2) the tangential stresses 

are equal to zero and the normal displacements are linear combinations of functions of 

the form (1.5), (1.6) (a smooth punch) ; (3) the tangential stress is directly proportional 
to the normal SU~SS (i.e. Coulomb’s law rXr, = ko,) of dry friction is given). and the 

normal displacements are linear combinations of functions of the form (1.5), (1.6). 
For vz > n, the first factor in (1.5) represents, except for a numerical coefficient, 

the (m - n + l)-th derivative of the Dirac delta function; this remark refers also 
to the second factor, with the obvious correspondence of the indices m --f k, n --+ 1. 

The type of the selfsimilar Problem A, B or C is determined by the two numbers 
112 - n and k - 1. The pair of numbers (m - 12, k - 1) will be called the self- 
similarity index of the Problems A, B, C. In order to solve a problem of the above 
mentioned type, one has first to determine the selfsimilarity index of the boundary value 

problem, or else, to represent the boundary conditions in the form of a linear superposi- 
tion of selfsimilar problems with different indices. ‘Then, for each index one has to intro- 

duce the corresponding general representations in terms of analytic functions and then 
to solve the concrete boundary value problems of the theory of analytic functions ob- 
tained from the boundary conditions, In the general case of the boundary conditions 

given above, it is necessary to solve the Riemann-Hilbert boundary value problem with 
discontinuous coefficients for one complex variable in the halfplane ; this is a well stud- 
ied problem and its closed solution can be obtained without difficulty (see, for example, 

c24, 251). 
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We note at once the following two circumstances. 
1). An arbitrary continuous function of two variables x and t in any closed do- 

main can be uniformly approximated by some polynomial, i. e. a sum of terms of the 
form zrn t”. To each of these terms in the boundary conditions of the Problems A, B 
and C (see (1.5) and (1.6)) there corresponds a well defined selfsimilarity index. Con- 
sequently, the case when the given loads or displacements represent arbitrary continuous 

functions reduces to the considered case. In addition, an arbitrary function of x ana t ’ 
can be represented in the form of a linear superposition of a,-shaped and gi-shaped 
functions, for each of which the solution will be selfsimilar and can be used as a Green’s 

function. 
2). From the solutions of the boundary value Problems A, B and c , the solution 

of the corresponding s tat i c and steady dynamic problems of the plane theory of 

elasticity can be obtained as some limiting cases. We indicate the corresponding limit- 

ing processes : 
The limiting quasi-static problem 

(1.7) 

the limiting quasi-steady dynamic problem 

v,, = VfPn, t’,-+o, t-+x, FJ-+U, ,(1.8) 

Here v and a, are some constants. 
Consequently, the indicated class of solutions of the dynamic theory of elasticity is, 

essentially, the analog of the plane static problem for the half-plane [31] and of the 

plane steady dynamic problem for the half-plane l-32, 331. 
We deduce general representations for the most commonly used selfsimilar types. 

From dimensional analysis it follows that for every selfsimilarity index there exist func- 
tions which satisfy the wave equation and are homogeneous functions of X, ?J, t of 
dimension zero. These are the following functions: 

1” the displacements 11 and 21, Problem C, index (1, 0) ; 
2’ the stresses oX, cry, T,~, Problems A and B, index (0, 0) ; 
3’ the displacement potentials cp and 4, Problems A and B, index (1, 1); we 

recall that 
U E 2 .I- $ , u 2L~ 

$/ (1.9) 

4” the functions LU and 1,7?? Problem C, index (m, n); 

5’ the functions IJoX,, LO,, L.G,,,, Problems A and B, index (m, 12). 
In 4’ and 5’. by L we understand the following linear differential operator: 

(1.10) 

We represent the indicated homogeneous functions of Y, ?/, t of dimension zero, in 

the form of a sum of two terms; one of them, obviously, satisfies the wave equation for 
longitudinal waves, and the other one satisfies the wave equation for transverse waves. 
The first of these terms can be represented as the real part of some analytic function of 
z,, while the second one as the real part of another analytic function of za (see the 
Appendix and formula (1.11)). For 7, z- 0 we have 
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Introducing the complex variable z, whose real part is equal to t / z, we reduce the 
boundary value Problems A, B or C of one index to the Riemann-Hilbert boundary 

value problem of one complex variable z but for several functions. However, in the 
case under consideration, all the functions can be expressed in terms of one function, 
and the problem reduces to the standard Riemann-Hilbert problem for one function. In 

the simplest cases we obtain the Dirichlet problem and the mixed Keldysh-Sedov prob- 

lem. 
Let us find the general representation for the five cases indicated. 

1’. The displacements u and v are homogeneous functions. 

According to the formulas (1.2) and (1.4). we have 

u = Re Ifi (2,) + f2 (-411 ~1 = Re [fS (4 + f4 (41 (1.12) 

The four unknown functions of complex variables must satisfy the two conditions (1.1) 
which take the following form: 

Differentiating (A. 7), we find 

Hence 

I%-’ - zla fL’ (3) = Zlf3’ (21) i .15) 

Gf2’ (4 = - vc2-2 - zza f4’ (22) 

Thus, the homogeneous displacements u and 2) can be represented with the aid of (1.12) 
in terms of four analytic functions related by the two equalities (1.15). The representa- 

tions for the stresses are obtained from (1. la), (1.14), (1.15) by making use of (1.3) 

(1.16) 

2*. The stresses or, cry, ‘tXy are homogeneous functions. 

According to Hooke’s law, the tirst derivatives of the displacements with respect to the 

coordinates are also homogeneous functions. Consequently, they can be represented in 
the form 

f%l 

- = Re [fl (4 + f2 hJ1, 
8X g = Re [fS (4 + f4 (+.)I (1.17) 

au 
- = Re ifs (4 + fa 641~ sz $- = Re [f7 (zd + fs (41 

The eight unknown functions of complex variables in (1.17) must satisfy the following 
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six conditions, four of which are consequences of (1.1) : 

(1.18) 

Finally, making use of the formulas (1.14), we find the representations 

au 
- = Re [gl(sJ + g, (41, (Ix $- = Re k3 (d + g, (z,)l (1.19) 

&I 
- = Re tg3 Cd + g5 (zJ1, 8X $ = Re k6 (4 - g2 @,)I 

Here the six unknown functions of a complex variable must satisfy the following four 

equalities resulted from (1.18) : 

-a3’(4 = l/cl-2 - Z12 .i?,’ (ZJ, W6’ @I) = vk2 - G2 ET,’ @I) (1.20) 

z2q2’ (z*) = - f/c,-2 - z22 g,’ @2), 22Y41(22) = - 1/G2 - z22-& (22) 

Substituting (1.19) into the formulas (1.3), we obtain the stresses 

c + = p Re 
i 
-$ [gl (2,) + g, (41 - 2g, (Zd -t 2gz (Zz)] (1.21) 

sy -= p Re { $ [g, (ZI) t ho6 @,)I - 2, (4 - 2g2 (4) 

TA!, -= LI Re (2g, (zJ + g4 (52) ml- g5 (&)I 

3”. The potentials cp and $ are homogeneous functions. 
Since CF satisfies the wave equation for longitudinal waves and $ for transverse waves, 

the functions q and $ can be represented in the form 

cp Z-L Re fl (4, II, x Re fa (z2) (1.22) 

Substituting (1.21) into (1.3) and (1.9), we have 

(I,23 

(1.24) 

4”. The functions L/r, Lt’ are homogeneous. In this case for 
every linear differential operator /i , we have the representations (1.12) (1.16) where 
instead of the displacements II, 2’ and the stresses uX , CJ y, T .y !, we set Lfc, L c and 
Lo,, Lo,, Lt,,, , respectively. 
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5’. The functions Lox, Lcyr L.G,~ are homogeneous. In this case 
the representations (1.19) - (1.21) are valid, where instead of the displacements U, 2) 
and the stresses or, or,, rXy we set Lu, Lv and Lox, Lou, LT,~ respectively. 

Thus, in all the indicated representations, essentially only two independent unknown 
functions of a complex variable are involved, as in the static problems of the theory of 
elasticity. 

The general representations of the problems, symmetric with 

respect to the z-axis. We present a sufficiently large class of problems of the 
dynamical theory of elasticity (symmetric with respect to the x -axis) for whose solutions 
we pose the following boundary condition: 

TXY = 0 for ?/ = 0 (1.25) 

In this case we can obtain the general representation of the solution in terms of one 

analytic function (of the same form for all the selfsimilar types indicated above). 

The boundary condition (1.25), on the basis of the representations (1.12) and (1.16), 
(1.17) and (1.21),(1.22) - (1.23) leads to the following supplementary equalities: 

homogeneous displacements 

2 ~ccl-~ - z2 J&2 - 22 fl’ (2) + (c2_2 - 222) f; (2) = 0 

homogeneous stresses 

(1.26) 

%a (2) + &?4 (2) + g5 (4 = 0 

homogeneous potentials 

(1.27) 

221/ct-2 - Z2f’r (2) + (c2-2 - 2z2) f2’(Z) = 0 (1.28) 

These equalities together with the equalities (1.15), (1.20) or (1.22) (respectively) allow 
us to espress all the quantities in terms of only one unknown analytic function of a com- 
plex variable. 

A similar class of problems in the statical theory of elasticity has been found by Wes- 
tergaard [34]. 

We introduce the following notation : 
in the case when the functions La, Lv are homogeneous 

12 = Lu, v” = Lv 

a,” zzz La,, uyo = Lo,, GyO = J%xY 
in the case when the functions LO,, Lo,,, LT~], are homogeneous 

(1.29) 

v” = -gLv 

6,,O = & Lziy, 6, e = -g Ls,, To y = 25 LT,!, 
at 

in the case when the potentials 9, IJ are homogeneous 

uo = 1 II (J., y, z)dr, vD = ,i v (X, y, a) dr 

t t f 

(1.30) 

(1.31) 
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In all the indicated cases the functions U” and zl” are homogeneous. With the aid of 
the notation introduced, all the general representations in terms of one analytic function 

can be reduced to the following form : 

u.’ = Re [ U1 (q) $ U, (z2)], u” = Re [V, (z,) + V, (z2)] 

p 3 o--- x -ct-2 
Ike 

i 

lc2-2 -- 2 (Q--Z - z12)] (r&J --- 22,2) X , 
c1-2 _ Zl!h IJ (21) $ - ciz,~W’ (z2) g 

(1.32) 

(1.33) 

~.r, = & Re 12. (cy2 - 2~~~) W’ (q) ‘$$ - 2 (Q - 2zz2) W’ (.zi_J 2) 

Here the functions U, (z) and fi, (z) are expressed in terms of the function W (z) as: 

~,~, , (z) ___~ __~ 2; I&‘“-_;- __ _-II_ 

2 (,2-E 

The functions V” (x, 0, t) and oUo 
W (z) in the following manner: 

II:’ (z), 

(z, 0, t) are expressed in terms of the function 

y = 0, uc = Rc W (z) (z = t/z;> (1.35) 

(1.36) 

Here and in the sequel, &’ (z) ,denotes the function 

S (2) = (CL” - Wj2 -I- 422 I/cl-” - 2 lj~,-* - 2 (1.37) 

analytic in the exterior of the cuts (--cz-l, --cl-I) and (~-1, c,-‘) of the plane z and 

real for Im z = U outside these cuts. 
We note that the unique real root of the equation S (z) -0 is the quantity which is 

the reciprocal of the velocity of the Rayleigh wave. 
In the problems with given applied loads it is convenient to make use of the function 

F (z), analytic in the upper (lower) half-plane 

(1.38) 

Let us note the following formula which follows from the relations (1.36) and (1.38): 

?f = 0, Cl10 == t-‘Re F (z) (2 = t / r) (1.39) 

2. The flr,t fundamental problem. The boundary conditions of the first 
fundamental problem for the half-plane are the following : 

5 %, ~2 fl (.z, t), TX, = f2 (x3 t) for !/ 2 0 (2.1) 

Problem 2.1. The problem on the action of an instantaneous concentrated im- 

pulse 1, applied to the boundary of the half-plane, is formulated in the following man- 

ner : 
5li -7 - 16, (2) 6, (t), a,, y 0 for jj := 0 (La) 

where 8, (a) is the IXrac function. This is Lamb’s classical problem. 
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In this case the potentials cp and 11) are homogeneous and we can make use of the 
formulas (1.31) - (1.39). With the aid of the formulas (1.39) and (1.31), the boundary 
conditions (2.2) are written as : 

Imz=O, Re F(z) = - 16, (f) (Z = 4) (2.3) 

Here we have made use of the relation 

ts, (X) = 6, + 
( J 

from the theory of generalized functions. Condition (2.3) can be written 

Imz -0, Re F a = - 16, (z) 
i j 

(2.4) 

The solution of the Dirichlet problem (2.4) has the form [24, 251 

, F (2) = -- ‘i z 
n 

From the formula (1.38) we obtain 

(2.5) 

Problem 2.2. Assume that a constant concentrated force I1 for t > 0 is ap- 

plied perpendicular to the boundary of the half-plane and moves with a constant velo- 
city v along the x-axis, while for t < 0 half-plane was at rest. The boundary con- 

ditions of this problem are the following: 

o,, = --P6, (X - Vt) 6, (t), TX?, = 0 for [ y = 0 (2.7) 

where 6, (r) is the Heaviside function. By definition 6,’ (t) = 6, (t). In this case the 
displacements are, obviously, homogeneous functions. According to the formulas (1.39) 
and (1.29) in which L = 1, the boundary conditions (2.7) can be written in the fol- 
lowing form : ]m z = 0, Re F (z) = ---PCS, (x - Vt) t6, (t) (2.8) 

(z = t / 5, t > 0) 
Since for t > 0 

6, (t) = 1, t6, (z - vt) = 6, (zx / t - v) 

the boundary conditions (2. 8) can be written 

Imz-0, ReF f = -Pp6,(z-V) 
!’ 1 

The solution of the Dirichlet problem (2.9) has the following form : 

F (4 
/ _ 

= - n (:‘; ,\.) 

i. e. 

(2.9) 

(2.10) 

According to formula (1.38) we have 

IV’ (z) = 
picz-2CT-l i/c.l_8 

JIpJ’ (3) (i --1- 2) 
(2.11) 

The displacements and the stresses are obtained from here with the aid of the formulas 
(1.29),(1.32)-(1.34) for L = 1. For V = 0 from(S.ll)weobtainthecorresponding 
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solution for the fixed force. The paper [19] contains the solution of Problem 2.2 by the 
method of integral transformations. 

Problem 2, 3. Let us assume that a constant pressure p is propagating at the 
boundary of the half-plane ?/ > 0 with a constant velocity I/ in both directions of the 
z-axis ; for I21 > Vt the boundary is free of loads 

Ss -=: - p, _ lZv,! 7~. \i for :I ~- 0, 1 rr I<: vt (2.12) 

Q :--: 0, Z,!, I? for :: =: 0, 1 7; 1 > 6’t 

In this problem, obviously, the stresses are homogeneous functions. According to the for- 

mulas (1.30) and (1.39). where it is necessary to set L = 1, the boundary conditions 
(2.12) take the form 

Irn z = 0, Re F (z) = -pVt 16, (z - Vt) + 61 (x + Vt)] (2.13) 

(Z==t/z, t>q 
Since for t > 0 

t&(x: - vt) 1 6, [+ - v,; , t6, (z + vt) = 6, [+ + v) 

the boundary conditions (2.13) can be written as 

Imz=O, Re F ‘,-’ x - pV [6, (Z - V) + 6, (Z t V)] 
( ) 

The solution of Dirichlet problem (2.14) has the following form : 

(2.14) 

i. e. 

pl’i - 
.“I (2 + I’) (2.15j 

F(z) z - ~ c2,,1ic 
” _ Z’? ) -- 
W’ (2) = 

2 pj,-lca-2i 1/(.,-Z __ -2 

q,l (F-2 - z”) s’ (z) 

The displacements and the stresses can be obtained from here with the aid of the formu- 

las (1.30), (1.32) - (1.34) for L = 1. 

3. Crrck problems. We consider some problems of the motion of the cracks 

1 1 lp 

with constant velocities; these problems pre- 
sent interest in the fracture mechanics. 

Problem 3. 1. Letusassumethatatthe 
initial instant t = 0 a cut appears at the 

f 

origin of the coordinates and it starts to ex- 

Y tend with a constant velocity V in both 
directions of the z-axis ; the sides of the cut 

1 X are subject to a constant normal load p (Fig. 
///////H/J-+- 

-Yf l7 Vt 
1). We assume that V< cl<, where cn is 
the velocity of the Raleigh surface waves. 

The boundary conditions of the problem 
for the half-plane 1/ > (J have the form 

I I lp 
Fig. 1 

6 --- - 1J- p, T.XY -= 0 (3.1) 
for !/ = 0, jzi<vt 

71~0, a,,=0 -for !I -9, I 4 > vt 

In the unperturbed domain 
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G, = Qy = rxv = 0 for x2 + .?/2>, Cl? ;3.2) 

Obviously, in this problem the stresses are homogeneous functions. According to formula 

(1.30) for L = 1, and also (1.35) and (1.36), the boundary conditions (3.1) lead us to 

the following boundary value problem : 

Im z = 0, [Re z\ < V-l, Re W (z) = 0 (3.3) 

Imz = 0, 1 Re zI > V-l, Im W’ (z) = 0 

To solve this problem it is necessary to know the behavior of the analytic function W (2) 
for IzI -+ T/‘-r and for z-+ oo. The point at infinity of the plane z corresponds to the 

origin of the physical plane, where the displacement u is equal to zero and the displa- 
cement u is bounded. Taking into account the representations (1.30) (1.33) and (1.34), 

we have from here z--t 00, Re W (z) = 0 (I), Im W (z) = 0 (3.4) 

Integrating the second condition (3.3) and taking into account (3.4). we can write 

Im z = 0, 1 Re z 1 > V-*, Im W (2) = 0 (3.5) 

The displacement u near the end of the crack x L= I/‘t becomes zero directly propor- 
tional [ 171 to the factor (Vt - 2)’ 2; consequently, according to the formulas (1.30), 
(1.32).and (1.34), the function W (z) can be written 

W (2) = 0 [ (2 j= V-l)-‘j’~l for z --+ T V-l (3.6) 

The solution of the boundary value problem (3.3) - (3.6) has the form [24, 251 

(3.7) 

(ljz2 - v-2 = 2 + 0(2-l), z-+ m) 

where A and B are some constants (the constant A is real). Because of the symmetry 
condition, the displacement u at the crack is an even function of 2, therefore, from 
here, because of the formulas (1.35) and (3.7), we obtain B = 0. Consequently, 

CV’(z) = - 
AV-2 

($ _ V-2)% (3.8) 

With the aid of the formulas (1.35) and (1.36) we obtain from here the displacement 
at the crack and the stress oy at the continuation of the crack 

(3.9) 

The constant A is determined from the conditions (3.1), which, by virtue of (3. lo), 
becomes 

Au~$-~‘ReG~ ,~~:~_V_L,8S= -_p V-l<MG=) (3.11) 

The computation of the integral in (3.11). which exists in the sense of the principal 
value, leads us to the following expression: 
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A = $, J = V-I,,,-;_,.,_,, {[q4 + 4q2(v2 - q2)] K(w,) - 

[ c2-4 - 4v-2 (q-2 + c~-~) -I 8V-4] E (wl) - 

4~;~ (T2 - CT-~) K ((I)~) + 8V-2 (V-2 - q-2) E (Q}, (3.12) 

Here K and E are the complete elliptic integrals of the first and second kind,respect- 
ively. The computation of all the quantities which represent physical interest can be 

found in the Broberg’s paper [6], whose solution is much more complex. If on the obtaihed 

solution we superpose a homogeneous extension ou = p, then, obviously, we obtain the 

=P 

5 

Fig. 2 

solution of the problem of the propagation of 
a cut with free edges. 

We assume now that the load on the cut in 
Broberg’s problem increases direct propor- 
tionally with time, i. e. instead of (3.1) we 
have the boundary condition o!, =: --pt, 

where p = co!lst. Obviously, the solution 
of this problem can be obtained from the 

solution of Broberg’s problem if in the latter 
the displacements, and the stresses are replaced 
by the velocity and the derivatives of the 

stresses with respect to time. 

Problem 3. 2. Let usfindthesolution 
of Baker’s problem [5]: the semi-infinite cut 

.x‘ < 0, ?/ = 0 appears abruptly at time 

t = 0 and starts to expand along the R’ -axis with constant velocity I/ (Fig. 2). 
The boundary conditions have the form 

(5 !, = 0, trl, =~ 0 for ?/ = 0, .r c< Vt (3.13) 

2’ = 0) T’.<,, == 0 for ?/ = 0, .r > Vt 

With the aid of (1.35) - (1.39) the conditions (3.13) lead to the following Hilbert bound- 
ary value problem 5 

Jm s := 0, ]:I? Z -< Cc’, Re z > V-l, Re F (2) 1~: 0 (3.14) 

Im 5 == 0, c;’ < Re 2 < V-l, Im F (z) == 0 

Irnz ==O, ~~‘-(:Rez<c,- I, ,q,12+ := 0 

The solution of this problem, symmetric with respect to the real axis, with the asympto- 

tic condition (3.6), has the form [24, 251 

(3.15) 
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Here the radical vz - V-i is single-valued in the plane z with the cut (-00, 

V-‘)alongtherealaxis.~z-V-l>0 for Imz=O,Rez> L-l,Aisa 
real constant, determined from the condition for x2 + y2 > czlt’ (Fig. 2) and is 

A = 5 , J = Re “‘-’ 
s 

(z - c;‘) exp l? (z) 
dz (V-l<M< m) (3.16) 

M z l/z - cl-1 (v-1 - z)” * 

where I’- (z) is the limiting value of the function I? (z) from below. The investigation 

of the solution can be found in paper [5], where the cumbersome Wiener-Hopf technique 
has been applied for the determination of the solution. 

Problem 3. 3. We assume that a cut -Vt < CT < Vt, y = 0 starts to extend 
under the action of instantaneous impulses of magnitude 1, concentrated at the origin, 

directed along the y-axis and in the opposite directions symmetrically with respect to 
the s-axis. The edges of the cut are free of loads and we have zero initial conditions. 

The boundary conditions for the semi-plane y > 0 have the form 

o, = --16, (4 S,(t), rxlt = 0 for ?j = 0, IX\< Vi! (3.17) 

21 = 0, rxu = 0 for y = 0, IX\> Vt (V<~R) 

In this case the displacement potentials rp and ‘II, are homogeneous functions. Because 
of (1.35) and (1.36) we arrive at the following problem: 

Im z = 0, IRe z/ < V-l, Re W’ (z) = 0 

Imz =O, jRezJ>V-‘, Im ” (‘) IV’(~) = +, (4) . (3.18) 
Vz” - cl-2 1 

(2 = t/x) 

This problem can be written in the form 

Imz=O, IRezI<V, Im$M/’ +j=_ 
2p(CZYC1-a) 61 (z) 

(3.19) 
Imz=O, IRezI>V, Re-$ W’ tt) = 0 

since S (z) = -2 i2 (Q - ctm2) + 0 (1) for z ---f 00. 

Due to the formulas (1.31) and (1.36), for z --t’Vml the function W (z) has order 

0 (r/ z - V-l), since the stress oy at the end of the crack has a singularity of the 
form r-I,‘%. 

The solution of the problem (3.19) under the indicated asymptotic condition, has the 
form 

-& W’ $ = 
( i 

Ic3-2 1/z-3 _ 17-2 
zntL (cz” _ Q) (3.20) 

Hence 
W’ (2) = 2nP ($::: (.,-“1 

J/+ _ c’_” 
i2 (3.22) 

The displacements and the stresses are determined with the aid of the representations 

(1.31) - (1.36). For example, the displacements of the edges of the cut are 

Ica-“JT-’ 

v = 27q.l ((2-e - c 1-y 

J,f/(yty _ X2 

t 
(!I = 0, I x I < r-4 (3.22) 

In fracture mechanics of fundamental importance is the stress field near the end of the 
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crack, described by the stress intensity factor Ii1 

In the case under consideration this factor is 

(3.23) 

(3.24) 

Problem 3.4. We give the solution of the problem, similar to the previous one, 
where we assume that the crack extends under the action of a force pt, increasing with 
time and concentrated at the origin. 

The boundary conditions are 

0, x - pts1 (x), Txu 70 for y==O, IXI<vr (3.25) 

17 = 0, Txu :_ 0 for .y==o, Ixl>IJt (v<cR) 

Obviously, in this case the stresses are homogeneous functions. The solution of this bound- 

ary value problem is found as in the previous problem. It has the form 

(3.26) 

In this case, according to (1.30) (1.32) and (3.26), we obtain the displacement of the 
edges of the crack (for 2/ = 0, ) II 1 < Vt) and the stress intensity factor, 

K1 z - 
ps(1--1) t’ 2 

En’ I (I’-” __ cl-s)“P(c2-2 ~ (p) 
(3.28) 

With the aid of the developed method it is easy to construct the solution for a moving 
crack with moving impulses or concentrated forces. Using these solutions as Green’s 
functions, we can construct the analytic solution of the problem in the case of an arbi- 
trarily loaded crack. The analysis of the obtained solution is not within the scope of the 
present paper. 

4. Contact problems, Problem 4.1. We assume that a wedge-like punch 
with opening angle 2~: is pressed against a semi-plane with constant velocity a,, (Fig. 3). 
The wedge is assumed to be obtuse and symmetric with respect to the :(/ -axis. At the 

Fig. 3 

initial instant t = 0 the vertex of the 
wedge coincided with the origin. There is 

no friction between the wedge and the elas- 
tic semi-plane. The initial conditions are 
zero. The boundary conditions of the prob- 
lem are: (4.1) 

?I = z’,t - ctg CL J .f), T,,.,, 0 

for !/ -7 0, I.rI<Vt 

o,, 0, TX!, ~~~ 0 for !/ -0, 12) > Vt 

We restrict ourselves to the case li < c,? . 
The quantity V is subject to determination 
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from the solution. 
In the problem under consideration the velocities are homogeneous functions, therefore 

we will make use of the representations (1.29), (1.32) - (1.39) for L = a/at. The boun- 
dary conditions (4.1) lead us to the following boundary value problem : 

Im 2 = 0, 1 Re .zI < I/-‘, Re F (z) = 0 (4.2) 

Im z = 0, IRezj > I/-l, Im F (z) = 0 

We seek the solution of the boundary value problem (4.2) which satisfies the following 

physical conditions: (1) the stress is bounded near the contact area x = f Tit, (2)at, 
the angular point z = 0 the stresses have integrable singularities, (3) the siress oy (z, 

0, t) at the contact area is an even function of 2. These conditions, as can be shown, 

allow us to construct a unique solution of the boundary value problem (4.2) in the fol- 
lowing form (A is a real constant) : 

F(z)=- Az 
1/ .$ - v-2 

(4.3) 

The quantities A and T/’ are obtained from the following conditions under the punch: 

au a11 

at= uo9 -jjy = -Ctg% for y=O, O<x<Vt 

These conditions by (1.29), (1.35) and (1.38) become 

V-1 
Acz-~ 

TR j “g; =uo 

c,-1 

V-1 

$? Re 
’ rep (t) dz s l/z%-_ 

s (T) 
= ctg w, ‘p(r) = - 1/V-2_22 

c,-1 

From (4.5) we obtain the constant A and the equation for V 

A== - JI (V) 
c~-~JI ’ Jz (V) 

= u,tga 

v-1 

J, = Re 
s 

cp (4 d,c ‘*” (~2-2 - W)2 cp (z) dz 

s (T) + ,I s (T) s1 (T) 
(.*-’ 1 ’ 
V-1 (.*_' 

Jz = Re 
' zcp (T)dZ 

\ 

z (c2-2 - 222)2 cp (t) r(t 

%1 s (4 s w s1 (4 
c2- 

(4.4) 

(4.5) 

(4.6) 

s1 (z) = (c2_2 - 2ay - 4t2 ljc,-2 - a2 1/c,-2 - T2 

With the aid of the formulas (4.3) and (1.39) for L z d / at we obtain the distribu- 
tion of the pressure under the punch and the amount of the total force 

5, = - Aln 
I 

vt + f(vt)s -- 29 
Z for y-0, IzI<Vt (4.7) 

Vt 

P = - \ q, (x, 0, t)ds = nAVt 
--‘vt 

(4.8) 
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This problem has been studied in a much more complicated manner in 1181 . How- 
ever, the author has taken the value of the velocity IJ equal to JJ’ =. tjO tg a, while 

the value of Ij has to be found from the 
solution of the problem according to 

equation (4.6). 
Problem 4. 2. We consider the 

uniformly accelerated indentation of a 

parabolic punch, symmetric with respect 

to the ?/ -axis, into a semi-plane (Fig. 4). 
We assume zero initial conditions. 

The boundary conditions of the prob- 

lem are 

(4.9) 

where b and g are specified constants. The quantity J.J has to be determined in the 
process of the solution. In this problem the accelerations are homogeneous functions, 
and so we apply the representations (1.29), (1.32) - (1.39) with L - P / i3t2. The boun- 

dary conditions (4.9) lead us to the boundary value problem (4.2) for the function F (2). 
We seek the solution of this problem which satisfies the following physical conditions: 
(1) the stresses are bounded near the ends of the contact area J 1 &- Vt and at the ori- 
gin for .C = 0; (2) the stress ot, (5, 0, t) at the contact area is an even function’of 2. 
These additional conditions allow us to construct a unique solution of the boundary value 

problem (4.2) in the following form : F(z) _ 2Ai7-‘: 
@? _ \.-y p 

(4.10) 

Here A is a real constant. The quantities A and v are obtained from the conditions 
under the punch, which follow from (4.9) 

a% 
--g,iG=-2b for y-0, jzI<vt &tJ (4.11) 

These conditions, with the aid of the formulas (4. lo), (1.29), (1.35) and (1.38). can be 

reduced to the following relations : 

A= I% 
cz-2J1’ 

Jl (I’) _: :’ 
Jz ( 1’) 2b 

,A4 

’ J, = - Re 
F J/y”& 

\ (.1_, s (.t) (I ‘3 - tp ’ 
J, = Re 

\ 
t2 1/e - c,-2 dz (4.12) 

b_, s (t) (v-2 - Tp 

(V-l < M f m) 

which serve for the determination of A and V,(the second is an equation relative to 
v>. From (4.10) and (1.39) we find the distribution of the stress under the punch and 

the amount of the total force acting on the punch 

o?, = - 2A l/(Vt)z - x2 for y = 0, (5 I< Vt (4.13) 
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q, (x, 0, t) dx = nAV2t2 (4.14) 

We note that on the basis of (4.7) and (4.13), the distribution of the pressure under 
the punch in the dinamical problems under consideration coincides with the statical 
ones, provided the width of the contact area is taken equal to 2Vt. 

Problem 4. 3. We cdnsider the dynamical problem of cleavageof a brittle bodv. 

Yl 
We assume that at the initial instant I -= 0 a semi- 

ZV,l! 
infinite wedge starts to move into an elastic 

plane with a constant velocity v0 , perpendi- 
cular to the z -axis in both directions (Fig. 5). 

x Simultaneously, a rectilinear crack starts to 

t 
extend from the end of the wedge into its 

continuation with constant velocity v the 
Fig. 5 edges of the crack are free of stresses. The 

initial thickness of the wedge is taken to be 
zero ; the remaining initial conditions are also zero. Obviously, the problem is symmetric 
with respect to the s-axis. Therefore it is sufficient to find the solution in the semi-plane 
y > 0. The boundary conditions of the problem have the form 

v = vOt, 17,~ = 0 for y=o, s>o 

G y=O, Txy=O for ?J=O, -Vt<x<O (4.15) 

v=O, TX,=0 for y=O, s<--Vt 

In this problem the.velocities are homogeneous functions, therefore we will use the 

formulas (1.29) and (1.32) - (1.36) for L = 8 / dt. 
The first boundary condition in (4.15) can be represented in the form 

CPV 
- = u&(t) at2 for y = 0, z > 0 (4.16) 

The boundary conditions (4.15), taking into account (4.16), lead us to the Keldysh-Sedov 

boundary value problem 

Im 2 = 0, --oo < Re z < -V-l, Im w’ (z) = 0 (4.17) 

Im 2 = 0, -Vl<Rez<oo, He W’ (z) = v,, 6, (z) 

We seek the solution of this problem satisfying the following condition : the stresses have 
integrable singularities at the end of the crack for 2 = - Vt and at the end of tde 

wedge for 2 = 0. We can show that this additional condition allows us to construct the 
unique solution of the boundary value problem (4.17) ; this solution has the form [24, 

251 
(4.18) 

where A is a real constant; the radical j/ 2 + v- I> 0 at the lower side of the cut 
(-V-l, +a) of the real axis. We determine this constant from the condition 

Ov =0 for y=O, -Vt<x<O 

which takes the form 
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,v 

Re ” 
I 

i(Az-1)5’(r)& 

_-r,_I t I/q-y - Z” (Z $ rq* 
= 0 (- IX < nr<,- V-1) (4.19) 

‘PO 

(4.20) 

With the aid of the formulas (1.30), (1.35), (1.36) taking into account (4.18) for L = 
a / at and (3.23), we find the displacement of the upper side of the crack and the stress 
intensity factor at the end of the dynamical crack 

(4.22) 

Essentially through the efforts of Kolosov, Muskhelishvili, Westergaard,Galin and Radok, 

a class of statical and steady dynamic elasticity problems have been discovered, whose 
effective solution have been found with the methods of the theory of functions of a com- 
plex variable. The approach developed in this paper, based on the Smirnov-Sobolev 
functionally-invariant solutions, allows us to apply these methods to the effective solu- 
tion of a similar class of dynamic problems of the theory of elasticity. 

Appendix. Functionally-invariant solutions of the wave equa- 
tion. We consider the wave equation in the plane case ((1-l is the wave propagation 
velocity) (PIi ?PlL &I -I- 

(7x2 n+ == a” i)t2 (A. 1) 

We seek solutions of the wave equation of the following form [l, 351: 

u (z, ?/. r) == f CT) (A. 2) 

where f (z) is an analytic function of 7, the variable z being determined by the equation 

1(T)t-~m(Z)r~I-n(Z)?/ Cp(t)==O (A. 3) 

Here 1 (t), m (r), TI (z), p (z) are some analytic functions of the complex variable T. 
Equation (A. 3) determines z as a function of the variables z, ?/ and t. Computing the 
second order 5, IJ and t derivatives of the function u with the aid of (A. 3) and insert- 
ing them into Eq.( A. 1). we obtain an equation of the following form (the prime denotes 
differentiation with respect to 7) 



Some dynamic problems 0: rhe theory of elasticity 603 

+; f'(T) 
r. 

f)I? (7) -i n2 (7) - n'l* (7) 

6' 1 -0 (A.4) 

h' =- 1' (T) 1 2. In' (7) z + n' (7) ?, -' p' (7) :.- 0 

It follows from (A. 4) that f (t) is the solution of the wave equation (A, l), provided the 
coefficients of the auxiliary equation (A. 3) satisfy the relation 

Obviously, both the real and the imaginary part of the function 1 (T) also satisfy the 
wave equation (A, 1) [ 11. The constructed solutions f (7) of the wave equation have 
been found first by Smirnov and Sobolev in 1932 [l] _ 

We consider the particular case of the functionally-invariant solutions of the wave 
equation when the function p (T) -. 0. Taking into account (A. 5). we set 

I(7) - 1. ,)I (7) = --- 1. u (7) 
_y(I.' 

(‘4.6) 

Then Eq. (A. 3) takes the form 

t__:z . jIm_““!, 0 (A.7) 
or 

1 _.- :5 -. r/a: - 2.2 q :- 9 (5 . z/t, Tj = !/ / !) (A. 8) 

Here the branch of the radical is fixed by the condition (2 is the new complex variable) 
_-- 

1 ,L’L ._ z.2 it . (J (;’ 1) 

We can see from (A. 7) that the solutions f (2) of the wave equation are functions of the 

arguments E and T), i.e. homogeneous functions of 5, Y, t of zero dimension. 
Let US investigate in detail Eq. (A. 8). The radical I/C? - Lo is single-valued in the 

plane of the complex variable z with the cut (-0. +a) along the real axis. Solving 
Eq. (A. 8) relative to -, we obtain 

Here the radicals have positive sign for 

For fixed j and 7) by virtue of (A. 8) we have a straight line. We will consider that 
part of the line on which t > 0 and we will call the half-linearay. According to(A.10). 

these rays form a conical bundle with vertex in the origin and with an opening angle 
arctg n-l at the vertex, the axis of the bundle being the / -axis. Equation (A. 8) or (A. 9) 

makes to correspond to the rays of this bundle the complex values of the plane ; with 
the cut ( -a, -!..cc) along the real axis. We note that to the rays which form the surface 
of the bundle - .> <- -_ 112 _> 

. r, - or .I.~ {- I/Z n-‘,: (A. 11) 

there correspond the points of the cut in the z-plane. To the bundle axis I ?I o 
or : ‘1 0 there corresponds the point at infinity of the plane. To the half-plane 
!I I> t) (!I < 0) there corresponds the half-plane 1111 2 ( 0 (1111 : > 0). We investigate 
the values of z for those points (5, TJ), which lie outside the bundle mentioned above, 
i.e. for the points where we have 

52 ,_ ’ , II- > 6 or I2 : !,’ y.:: ,,-2p 
(A. 1’2) 



604 E.F.Afanas'ev anb G.P.Cherepanov 

Equation (A. 8), under the condition (A. 12). gives two real roots belonging to the segment 
(--I(, -i-n) 

z1,2 = 
E C q dag (EZ -t- n2) - I zt f y l/C22 (12 + yy”) - t” 

4a +_ 7” I; 
x.2 + ye (A. 13) 

Let Mo (~cI, YIP, td) be some point outside the conical bundle, its coordinates satisfying 
inequality (A, 12), and let z10 and Z’LO be the corresponding values of z according to 
(A. 13). Inserting the values z = zlO, z := z~,, into Eq. (A. 8). we have two planes in the 
space rvt which pass through the point MO. Hence, to each value z, on the cut (-a, 

-I-Q), there corresponds some plane in the space qt. This plane passes through the ray 
of the surface of the conical bundle corresponding to the value z = z1 and is tangent 

to the surface. Otherwise the plane would intersect this surface and part of it would be 
inside the conical bundle. It would follow that to a point lying inside the bundle there 
correponds a real value z =: z;). According to (A. 9) and (A. 10) this is not possible. 

Let f (2) be an analytic single-valued function on the plane with the cut (-a, -+a) 

and assume that the corresponding solution 

r( (2, ?I, 1) : IXe f (z) (A. 14) 

is defined inside the conical bundle (A. 10). We indicate a method of continuous exten- 
sion of this solution into the space outside the conical bundle (A. 12). We consider the 
family of half-planes P,, tangent to the surface of the bundle (A. 11) of one direction, 

taking in (A. 13)* for ex4mple, only the upper plus sign. These tangent half-planes will 
not intersect and they fill out a part of the space outside the bundle. At one of these 

planes f (z) maintains a constant value and we can define in a single-valued manner 

the solution u (2, ?I, t) outside the bundle, making use of the same formula (A.14)which 
gives the solution inside the conical bundle. In a similar manner we can extend the 
solution outside the conical space along the half-planes P_ of the other direction. We 

can decompose the function u into two terms u = ZQ (z) + UP (z) and extendone of them 
along the half-tangents k,, and the other one along the half-tangents P_. It follows 

from here that the methods of extensions form an uncountable set. 
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We prove a theorem on the instability of the equilibrium of a dissipative sys- 

tern in the absence of a maximum of the force function. The dissipation is 
partial and is absent only in one of the degrees of freedom. The proof is based 
not on the linearization of the differential equations but on Liapunov’s direct 

method and uses a somewhat modified form of Krasovskii’s theorem. The insta- 
bility is established for systems with arbitrary nonlinear dissipative forces and 

an isolated equilibrium. 

1. Strtement of the problem. Let q’ --. (11,. q2, . . . , q,,) be the gene- 
ralized coordinates of a holonomic mechanical system with ?I degrees of freedom (here 

and later the prime denotes transposition), We assume that the kinetic energy is a quad- 
ratic form in the generalized velocities Q,‘, q?‘, . . . 7 q,1 

where .l (‘1) I( cli, 11. W e assume that the functions “ij (q) are continuously differ- 
entiable in some neighborhood of the point q -:O, the matrix 11 is symmetric, and quad- 
ratic form (1.1) is positive definite in q . 

Let the force function li (‘I) also be continuously differentiable and, besides conser- 

vative forces, let there act only dissipative forces, so that the equations of motion have 
the form 


